Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA.

نویسندگان

  • E E Geisert
  • L Yang
  • M H Irwin
چکیده

Reactive astrocytes form a scar after injury to the CNS that many investigators believe contributes to the lack of functional regeneration. In the present study, we identify an astrocytic membrane protein that appears to play an important role in reactive gliosis and scar formation. Cultures of rat astrocytes were used as a model system to produce and to screen monoclonal antibodies that would alter cell growth. One antibody, AMP1, was identified that depresses the mitotic activity of cultured glial cells and alters their morphology. Expression cloning reveals that the antigen on the external surface of the cultured glial cells has a high degree of homology with the human lymphocyte protein called Target of the Anti-Proliferative Antibody (TAPA-1; this rat protein will be referred to as rTAPA). rTAPA is a member of the tetramembrane-spanning superfamily of proteins and, as with other members of this family of proteins, rTAPA is associated with the regulation of cellular interactions and mitotic activity. After an injury to the cerebral cortex, there is a dramatic increase in AMP1 immunoreactivity that is spatially restricted to the reactive astrocytes at the glial scar. This change represents an upregulation of a membrane protein, rTAPA, that is approximately equal to the increase observed for glial fibrillary acidic protein. The high levels of rTAPA at the site of CNS injury and the AMP1 antibody perturbation studies indicate that rTAPA may play a prominent role in the response of astrocytes to injury and in glial scar formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The target of the antiproliferative antibody (TAPA) in the normal and injured rat retina.

PURPOSE The target of the antiproliferative antibody (TAPA, CD81) is a member of the tetramembrane spanning superfamily of proteins and appears to be involved in the regulation of mitotic activity and the stabilization of cellular contacts [J Neurosci 1996; 16:5478-5487]. The present study examines the distribution of this protein in the normal rat retina and its role in reactive gliosis occurr...

متن کامل

Engaging CD19 or target of an antiproliferative antibody 1 on human B lymphocytes induces binding of B cells to the interfollicular stroma of human tonsils via integrin alpha 4/beta 1 and fibronectin

Adhesion of B lymphocytes within the different compartments of secondary lymphoid organs is essential for the function of the humoral immune response. It is not currently known how the temporary immobilization of B cells in distinct areas of this complex microenvironment is regulated. The present study aimed at defining B cell antigens that initiate binding of B cells to human tonsil sections i...

متن کامل

Regulation of Endothelial Cell Motility by Complexes of Tetraspan Molecules CD81/TAPA-1 and CD151/PETA-3 with α3β1 Integrin Localized at Endothelial Lateral Junctions

Cell-to-cell junction structures play a key role in cell growth rate control and cell polarization. In endothelial cells (EC), these structures are also involved in regulation of vascular permeability and leukocyte extravasation. To identify novel components in EC intercellular junctions, mAbs against these cells were produced and selected using a morphological screening by immunofluorescence m...

متن کامل

Cloning and Expression of the Variable Regions of Anti-EGFR Monoclonal Antibody in E. coli for Production of a Single Chain Antibody

Background:Epidermal growth factor receptor (EGFR) overexpression is a characteristic of several malignancies and could be considered as an excellent target for designing specific inhibitors such as anti-EGFR monoclonal antibodies for cancer therapy. Drawbacks exerted by large sizes of full-length antibodies have lead to the development of single chain antibodies, which benefit from having smal...

متن کامل

Hippocampal Astrocyte Response to Melatonin Following Neural Damage Induction in Rats

Introduction: Brain injury induces an almost immediate response from glial cells, especially astrocytes. Activation of astrocytes leads to the production of inflammatory cytokines and reactive oxygen species that may result in secondary neuronal damage. Melatonin is an anti-inflammatory and antioxidant agent, and it has been reported to exert neuroprotection through the prevention of neuronal d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 17  شماره 

صفحات  -

تاریخ انتشار 1996